

@ EPFL

Résumé Semaine 11

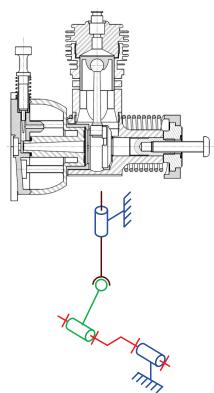
Systèmes mécaniques II, Assemblages boulonnés I

Dr. S. Soubielle

S. Soubielle

Résumé semaine 11

ME-101 / ME-106 - Construction Mécanique I


Systèmes mécaniques II

Mécanisme

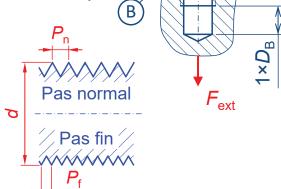
- Système mécanique composé de plusieurs sous-ensembles mobiles
- Liaisons mécaniques entre les SEM
 → Blocage des degrés de liberté...
 - ... soit par serrage
 - · ... soit par obstacle

Liaisons mécaniques et schéma cinématique

- Liaison mécanique → degrés de liaison
- Nb de DDL = 6 Nb de degrés de liaison
- Liaisons cinématiques normalisées
 Schéma cinématique

 $T_{\rm ext}$

 $T_{\rm ext}$


Assemblages boulonnés I

Fonction du filetage = maintien en position

- Serrage → force d'appui N
 - · Filetage hélicoïdal « autobloquant »
 - Contraintes → Traction dans la vis
 - → Compression dans les pièces
- Valable si F_{ext} (axiale) ou T_{ext} (transverse)

Filetage normalisé métrique

- Séries à pas normal et à pas fin
- Pas normal à utiliser par défaut
- Limitations dues à l'usinage

S. Soubielle 3

Résumé semaine 11

ME-101 / ME-106 - Construction Mécanique I

Quiz TurningPoint (me101)

Assemblages boulonnés II

Règles de conception, serrage au couple, visserie normalisée, trous de passage

Dr. S. Soubielle

S. Soubielle

Assemblages boulonnés II

ME-101 / ME-106 - Construction Mécanique I

Dans ce cours, nous allons...

... Définir les règles de conception d'un assemblage boulonné

- ... Profondeur de filet en prise
- ... Rigidité de la vis et protection contre le desserrage
- ... Diamètre du trou de passage et dimensions du lamage / de la fraisure
- ... Résistance mécanique de la vis

... Définir la visserie normalisée usuelle

- ... Principales références de vis et de rondelles
- ... Clés de serrage et impact sur le design des pièces
- ... Visserie à serrage manuel

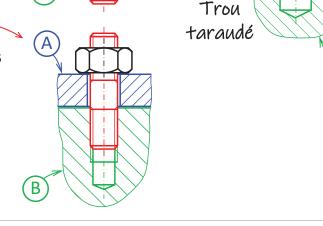
Trou lisse

(J>0)

Ŋ

Architecture de boulonnage

1. Vis + taraudage


→ À privilégier

2. Vis + écrou

→ Si taraudage impossible dans la 2ème pièce

 → Si l'utilisation d'une vis est impossible (p. ex. pour raisons d'encombrement)

S. Soubielle 3

Assemblages boulonnés II

ME-101 / ME-106 - Construction Mécanique I

Profondeur d'implantation L_i

Force de traction F sur la vis

→ Contraintes (contact + cisaillement) dans les filets

L_i = profondeur de filetage en prise

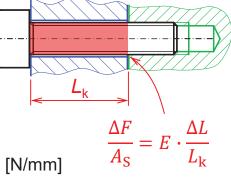
- Si L_i trop faible → risque d'arrachage des filets
- (L_i)_{min} dépend du matériau le plus faible (filetage extérieur ou filetage intérieur ?)

Aciers

- \rightarrow $L_i = 1.5 \times d$
- Fontes et alliages légers → L_i = 2 × d

Cas des serrages / desserrages répétés

- Trou taraudé dans fonte ou alliage léger → risque de grippage
- Solution = le filet rapporté ou « Hélicoïl ® »


Sécurisation des assemblages boulonnés

Protection contre le desserrage

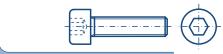
Si F_{ext} variable et/ou vibratoire
 → Il faut « assouplir » la vis

L_k = distance entre la face d'appui de la tête de vis et le premier filet en prise

$$\rightarrow$$
 $\Delta F = k_{\rm vis} \cdot \Delta L$ avec $k_{\rm vis} = \frac{E \cdot A_{\rm S}}{L_{\rm tr}}$ [N/mm]

- $(L_k)_{min} = d \text{ si } F_{ext} \text{ cte}$... = 3d si F_{ext} variable ... = 5d si F_{ext} vibratoire
- 2. Emploi d'une rondelle à obstacle
- 3. Collage au frein-filet (Loctite ®)
- Protection contre le matage / tassement sous la tête de vis
 - → Par l'emploi d'une rondelle plate

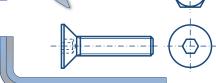
LOCTITE
243 ©
Production of the control of the cont

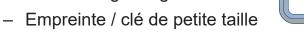

S. Soubielle

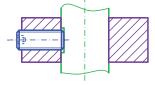
Assemblages boulonnés II

ME-101 / ME-106 - Construction Mécanique I

Vis normalisées principales


- Vis à tête cylindrique et six pans creux ISO 4762
 - Partiellement ou entièrement filetée
 - Serrage → clé Allen (« inbus » en CH)


- Vis à tête hexagonale ISO 4014 / 4017
 - Filetage partiel (ISO 4014) / total (ISO 4017)
 - Serrage → clé à fourche ou à pipe


- Entièrement filetée uniquement
- Embase conique → fonction de centrage
- Serrage → clé Allen (« inbus » en CH)

- Vis sans tête six pans creux ISO 4026
 - Vis à serrage tangentiel

Interface de serrage et design des pièces

Six pans creux

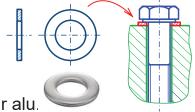
- → Serrage « axial » ou « radial »
- → Vis « noyée » possible
- → Faible diamètre d'accès de la clé si serrage axial

Hexagonale (six pans)

- → Serrage « axial » pas possible avec clé à fourche
- → Serrage « radial » affleurant possible avec clé à fourche
- → Vis « noyée » possible si utilisation d'une clé à pipe... mais gros diamètre d'accès !

S. Soubielle 7

Assemblages boulonnés II


ME-101 / ME-106 - Construction Mécanique I

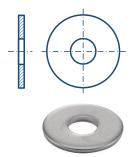
Rondelles normalisées principales

Rondelle plate – ISO 7089

Surface d'appui sur pièce « A » → +70 %

- → Prévient contre le tassement par matage
- → Très recommandé si tête de vis en appui sur alu.

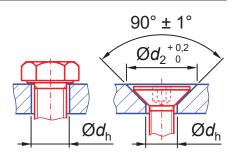
Rondelle plate large – ISO 7093


Plus large et plus épaisse que la ISO 7089

→ Fonction d'arrêt axial sur arbre (par ex.)

Création d'un obstacle par indentation de la pièce fixe et de la tête de vis

→ Prévient contre le desserrage


Trous de passage, fraisure, lamage (1/2)

Trou lisse dans la pièce « A »

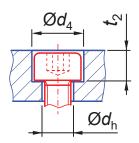
- Doit avoir du jeu (J > 0) avec la vis
- Par défaut : Ød_h selon norme ISO 273
- Si besoin de plus de précision
 - → Possibilité de percer jusqu'à (au minimum) Ød avec tol. « H »
 - → Utilisation d'une vis à tête conique

Fraisure pour vis t co 6pc

- Prévu pour que la tête de vis soit noyée
- Dimension Ød₂ selon norme DIN 74

Diamètre de filetage d	<i>d</i> _h H13	d ₂
1,6	1,8	
2	2,4	4,9
2,5	2,9	6,1
3	3,4	7
4	4,5	9.2
5	5,5	11,5
6	6,6	13,7
8	9	18,3
10	11	22,7

S. Soubielle 9

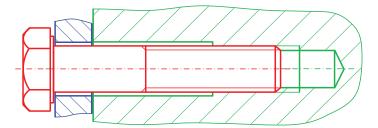

Assemblages boulonnés II

ME-101 / ME-106 - Construction Mécanique I

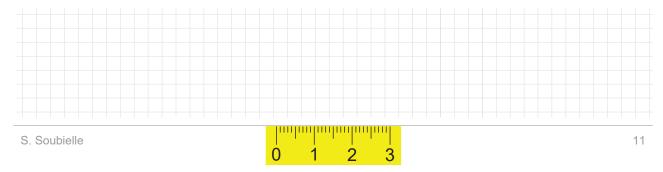
Trous de passage, fraisure, lamage (2/2)

Lamage pour vis tête cylindrique ISO 4762

- Prévu pour que la tête de vis soit noyée
- Dimension $\emptyset d_4$ selon norme DIN 974-1
- Hauteur de lamage t_2 telle que t_2 = k_{max} + z

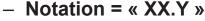


	<u>ග</u>			9 narquage déterminar	
q_3	φ ₁ ξ	Ra 0,8	d_2	-(-	-
↓	k L	+0,25 0 L ₂	,	s +0,1	
Article #	d ₁	k max	t min	s	<i>L</i> ₁
1985019	6	4,5	2,4	3	8

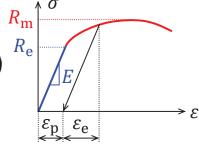

Diamètre de filetage d	d ₄	Ajout z
1,6	3,5	0,4
2	4,4	0,4
2,5	5,5	0,4
3	6,5	0,4
4	8	0,4
5	10	0,4
6	11	0,4
8	15	0,6
10	18	0,6

L'AB ci-contre est représenté à l'échelle 2:1. Il a été réalisé selon les règles du cours, et utilise une vis à pas normal.

- 1. Quel est le type de vis utilisé (numéro de la norme), et quelles sont ses dimensions (diamètre × longueur)?
- 2. Quel est le matériau de la pièce de droite et de la vis (pièce « B »)?
- 3. Quelles natures de sollicitations ext. sont compatibles avec cet AB?
- 4. Quel est le dia. du trou de passage selon ISO 273 ? De l'avant-trou ?


Assemblages boulonnés II

ME-101 / ME-106 - Construction Mécanique I


Résistance de la vis (1/2)

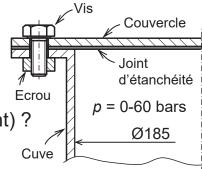
- Paramètres de résistance méca.
 - Limite élastique R_e [MPa]
 - Limite à rupture R_m [MPa]
- Classe de qualité (aciers)

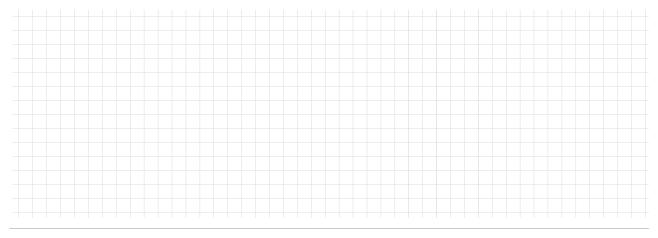
- $R_{\rm m} = XX \times 100$
- R_e = 10 × XX × Y
- Si classe de qualité ↑
- ← Charge admissible ↑ et/ou taille de la vis ↓

		•			
Classe de qualité	4.6	5.6	8.8	10.9	12.9
R _e [MPa]	240	300	640	900	1080
R _m [Mpa]	400	500 	800	1000	1200
	M 20165	M16x60	M 12x60	M 10 x 55	M 8 2 5 0

258 a

Résistance de la vis (2/2)




Exercices d'application

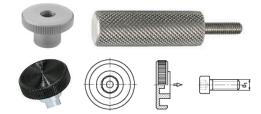
La cuve ci-contre, fermée par 8 vis M6, est soumise à des cycles de pression 0-60 bars.

1. Quelle classe de qualité doit-on choisir pour garantir $\sigma < R_e$ (cas à la limite du décollement) ?

2. Cette conception est-elle être pertinente?

S. Soubielle 13

Assemblages boulonnés II


ME-101 / ME-106 - Construction Mécanique I

Visserie à serrage manuel

· Cas d'emploi

- Assemblages... ne nécessitant pas de force de serrage élevée
 destinés à être démontés régulièrement
- Principaux types (vis et écrous)
 - À Moletage

... ou boutons moletés (à clipser sur vis t 6p ou t cy 6pc)

- À oreilles / papillon

A rosette / bouton / volant de serrage

Références normatives principales

DIN 127	Rondelle de blocage à ressort avec extrémités carrées ou extrémités à becs
ISO 68-1	Filetages ISO pour usages généraux — Profil de base — Partie 1: Filetages métriques
ISO 261	Filetages métriques ISO pour usages généraux — Vue d'ensemble
ISO/DIS 262	Filetages métriques ISO pour usages généraux — Sélection de dimensions pour la boulonnerie
ISO 273	Éléments de fixation — Trous de passage pour vis
ISO 898-1	Caractéristiques mécaniques des éléments de fixation en acier au carbone et en acier allié — Partie 1: Vis, goujons et tiges filetées de classes de qualité spécifiées — Filetages à pas gros et filetages à pas fin
ISO 3506-1	Fixations — Caractéristiques mécaniques des fixations en acier inoxydable résistant à la corrosion — Partie 1: Vis, goujons et tiges filetées de grades et classes de qualité spécifiés
ISO 3506-2	Caractéristiques mécaniques des éléments de fixation en acier inoxydable résistant à la corrosion — Partie 2: Écrous
ISO/CD 3506-3	Caractéristiques mécaniques des éléments de fixation en acier inoxydable résistant à la corrosion — Partie 3: Vis sans tête et éléments de fixation similaires non soumis à des contraintes de traction
ISO 4014	Vis à tête hexagonale partiellement filetées — Grades A et B
ISO 4017	Fixations — Vis à tête hexagonale entièrement filetées — Grades A et B
ISO/DIS 4032	Écrous hexagonaux normaux (style 1) — Grades A et B
ISO 4762	Vis à tête cylindrique à six pans creux
ISO 7089	Rondelles plates — Série normale — Grade A
ISO 10642	Vis à tête fraisée à six pans creux
ISO 80000-3	Grandeurs et unités - Partie 3: Espace et temps

S. Soubielle 15

Assemblages boulonnés II

ME-101 / ME-106 — Construction Mécanique I

Notes personnelles

